organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Amino-3-carboxy-1*H*-1,2,4-triazol-4ium nitrate monohydrate

Fadila Berrah,^a*‡Rafika Bouchene,^a† Sofiane Bouacida^b† and Thierry Roisnel^c

^aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, ^bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and ^cCentre de difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France Correspondence e-mail: fadilaber@yahoo.fr

Received 7 March 2012; accepted 14 March 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.109; data-to-parameter ratio = 13.6.

The two-dimensional crystal packing of the title compound, $C_3H_5N_4O_2^+\cdot NO_2^-\cdot H_2O$, results from the stacking of well separated layers (*i.e.* with nothing between the layers) parallel to the ($\overline{1}13$) plane in which adjacent cations adopt a head-to-head arrangement such that two –COOH groups are linked *via* two water molecules (the water O atom behaves simultaneously as donor and acceptor of hydrogen bonds) and two –NH₂ groups are linked through two nitrate anions. This arrangement leads to alternating hydrophilic and hydrophobic zones in which O–H···O and N–H···O hydrogen bonds, respectively, are observed.

Related literature

For properties of 1,2,4-triazoles, see: Ouakkaf *et al.* (2011). For related structures, see: Fernandes *et al.* (2011); Berrah *et al.* (2011*a,b*); Jebas *et al.* (2006).

Experimental

Crystal data

$C_3H_5N_4O_2^+ \cdot NO_3^- \cdot H_2O_3$	a = 4.9934 (13) Å
$M_r = 209.14$	b = 6.7454 (17) Å
Triclinic, $P\overline{1}$	c = 12.446 (3) Å

‡ Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria

$\alpha = 97.572 \ (12)^{\circ}$	
$\beta = 100.524 \ (13)^{\circ}$	
$\gamma = 98.933 \ (13)^{\circ}$	
$V = 401.60 (18) \text{ Å}^3$	
Z = 2	

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{min} = 0.863, T_{max} = 0.982$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.040 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.109 & \text{independent and constrained} \\ S &= 1.03 & \text{refinement} \\ 1821 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.35 \text{ e } \text{ Å}^{-3} \\ 134 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.29 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5\cdots O1W$	0.82	1.72	2.5210 (17)	166
$O1W - H2W \cdot \cdot \cdot O4^{i}$	0.84 (3)	1.97 (3)	2.7985 (18)	166 (2)
$O1W - H1W \cdot \cdot \cdot N3^{ii}$	0.86(2)	2.05 (3)	2.9011 (19)	172 (2)
$N5-H5B\cdots O2^{iii}$	0.86	2.04	2.8352 (18)	154
$N2-H2\cdots O1^{iii}$	0.86	2.02	2.8790 (17)	178
$N4-H4\cdots O1$	0.86	2.06	2.9112 (18)	171

Mo $K\alpha$ radiation $\mu = 0.17 \text{ mm}^{-1}$

 $0.42 \times 0.2 \times 0.11 \text{ mm}$

4012 measured reflections

1821 independent reflections

1563 reflections with $I > 2\sigma(I)$

T = 150 K

 $R_{\rm int}=0.040$

Symmetry codes: (i) -x, -y + 2, -z; (ii) -x - 1, -y + 1, -z; (iii) x + 1, y + 1, z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We are grateful to the LCATM laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2522).

References

- Berrah, F., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o2057–o2058.
 Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525–o526.
- Brandenburg, K. & Berndt, M. (2001). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fernandes, J. A., Liu, B., Tomé, J. C., Cunha-Silva, L. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2073–o2074.
- Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481-o3482.
- Ouakkaf, A., Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1171–o1172.

Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2012). E68, o1116 [doi:10.1107/S1600536812011154]

5-Amino-3-carboxy-1H-1,2,4-triazol-4-ium nitrate monohydrate

Fadila Berrah, Rafika Bouchene, Sofiane Bouacida and Thierry Roisnel

Comment

Following our on-going interest on crystal structures of hybrid compounds established by hydrogen bonds and in attempts to clarify anion substitution influence upon hydrogen bonding patterns, we have undertaken synthesis of new compounds using 1,2,4-triazol derivatives and various inorganic acids (Ouakkaf *et al.*, 2011). In this article, we report the preparations and crystal structure of the title compound.

The asymmetric unit of the title compound contains a cation, an anion and a water molecule linked by O—H…O and N —H…O hydrogen bonds (Fig.1.) The geometry of the triazole planar ring is similar to that seen in related compounds (Fernandes *et al.*, 2011; Ouakkaf *et al.*, 2011); it exhibits a short distance of 1.3023 (19) Å showing the double-bond formed between atoms C2 and N3, two intermediat bonds (1.3443 (18) and 1.3529 (19) Å) associated with a delocalized double bond (N4 :::C3 :::N2), and two long distances 1.3698 (19) and 1.3779 (18) Å related to the single bonds C2—N2 and N3—N4, respectively.

The two-dimensional network of the title compound results from the stacking of well separated planar layers parallel to (-113) plane (Fig. 2); analogous networks have been observed in other nitrate compounds (Berrah *et al.*, 2011*a,b*; Jebas *et al.*, 2006). In each layer, the adjacent cations are oriented in a head to head configuration in such a manner that two – COOH groups are linked *via* two water molecules (H₂O behaves simultaneously as donor and acceptor of hydrogen bonds) and two –NH₂groups are linked through two nitrate anions (Fig. 3 and Table 1). This arrangement leads to an alternating hydrophilic and hydrophobic zones where O—H…O and N—H…O H-bonds are observed, respectively.

Experimental

Colourless crystals of the title compound were grown by slow evaporation of water-methanol (1:1) solution of 5amino-1,2,4-triazol-1*H*-3-carboxylic acid hydrate and nitric acid in a 1:1 stoichiometric ratio.

Refinement

The H atoms of the water molecule were located from a difference Fourier map and were refined with $U_{iso}(H) = 1.5U_{eq}(O)$. The remaining H atoms were located from difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms with O—H = 0.82 Å and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(N)$ and $1.5U_{eq}(O)$.

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Figure 1

An asymmetric unit of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

A two-dimensional network of the title compound viewed along the [1-10] direction. Hydrogen bonds are shown as dashed lines.

Figure 3

A view of the title compound parallel to the (-113) plane of the planar infinite layer showing alternating hydrophilic and hydrophobic zones involving O—H···O and N—H···O hydrogen bonds, respectively; hydrogen bonds are shown as dashed lines.

5-Amino-3-carboxy-1H-1,2,4-triazol-4-ium nitrate monohydrate

Crystal data	
$C_{3}H_{5}N_{4}O_{2}^{+} \cdot NO_{3}^{-} \cdot H_{2}O$ $M_{r} = 209.14$ Triclinic, <i>P</i> 1 a = 4.9934 (13) Å b = 6.7454 (17) Å c = 12.446 (3) Å $a = 97.572 (12)^{\circ}$ $\beta = 100.524 (13)^{\circ}$ $\gamma = 98.933 (13)^{\circ}$ $V = 401.60 (18) \text{ Å}^{3}$	Z = 2 F(000) = 216 $D_x = 1.729 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1584 reflections $\theta = 3.4-27.4^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 150 K Stick, colourless $0.42 \times 0.2 \times 0.11 \text{ mm}$
Data collection	
Bruker APEXII diffractometer Graphite monochromator CCD rotation images, thin slices scans Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{min} = 0.863, T_{max} = 0.982$ 4012 measured reflections	1821 independent reflections 1563 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -6 \rightarrow 6$ $k = -6 \rightarrow 8$ $l = -16 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.109$ S = 1.03 1821 reflections 134 parameters	0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 0.0973P]$	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
01	-0.1877 (2)	-0.15602 (16)	0.31865 (9)	0.0218 (3)
N3	-0.0716 (3)	0.32704 (19)	0.20042 (11)	0.0174 (3)
O4	0.2001 (2)	0.80430 (17)	0.13489 (10)	0.0241 (3)
05	-0.2192 (2)	0.59982 (18)	0.06811 (10)	0.0234 (3)
Н5	-0.2505	0.6888	0.0311	0.035*
O1W	-0.3752 (3)	0.82557 (19)	-0.06786 (10)	0.0272 (3)
H2W	-0.319 (5)	0.946 (4)	-0.0762 (18)	0.041*
H1W	-0.544 (5)	0.791 (3)	-0.1043 (19)	0.041*
N5	0.5272 (3)	0.2985 (2)	0.39298 (11)	0.0219 (3)
H5A	0.4999	0.185	0.4172	0.026*
H5B	0.6829	0.3811	0.4162	0.026*
O2	-0.0623 (2)	-0.34292 (17)	0.44188 (10)	0.0284 (3)
O3	0.2143 (2)	-0.06970 (17)	0.43144 (10)	0.0262 (3)
N2	0.3435 (2)	0.51522 (18)	0.27273 (10)	0.0158 (3)
H2	0.4806	0.6154	0.2854	0.019*
N4	0.0781 (3)	0.23345 (19)	0.27646 (10)	0.0167 (3)
H4	0.0176	0.1178	0.2937	0.02*
N1	-0.0104 (3)	-0.18948 (19)	0.39831 (10)	0.0171 (3)
C3	0.3308 (3)	0.3458 (2)	0.32034 (12)	0.0155 (3)
C2	0.0952 (3)	0.4958 (2)	0.20038 (12)	0.0165 (3)
C1	0.0296 (3)	0.6523 (2)	0.12995 (13)	0.0175 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0199 (5)	0.0212 (6)	0.0216 (6)	0.0009 (4)	-0.0034 (4)	0.0088 (5)
N3	0.0166 (6)	0.0160 (6)	0.0191 (7)	0.0023 (5)	-0.0004(5)	0.0077 (5)
O4	0.0237 (6)	0.0185 (6)	0.0289 (6)	-0.0007(5)	0.0009 (5)	0.0109 (5)
O5	0.0219 (6)	0.0198 (6)	0.0261 (6)	0.0013 (5)	-0.0043 (5)	0.0114 (5)
O1W	0.0219 (6)	0.0221 (6)	0.0343 (7)	-0.0020 (5)	-0.0057 (5)	0.0159 (5)
N5	0.0150 (6)	0.0186 (7)	0.0293 (8)	-0.0034 (5)	-0.0034 (5)	0.0123 (6)
O2	0.0274 (6)	0.0189 (6)	0.0339 (7)	-0.0075 (5)	-0.0047 (5)	0.0156 (5)
03	0.0183 (6)	0.0212 (6)	0.0334 (7)	-0.0073 (5)	-0.0039 (5)	0.0105 (5)

supplementary materials

N2	0.0135 (6)	0.0134 (6)	0.0190 (6)	-0.0007 (5)	0.0002 (5)	0.0060 (5)	
N4	0.0149 (6)	0.0150 (6)	0.0195 (6)	0.0004 (5)	-0.0011 (5)	0.0095 (5)	
N1	0.0166 (6)	0.0139 (6)	0.0195 (7)	-0.0002 (5)	0.0015 (5)	0.0047 (5)	
C3	0.0153 (7)	0.0134 (7)	0.0177 (7)	0.0016 (5)	0.0023 (6)	0.0045 (6)	
C2	0.0151 (7)	0.0153 (7)	0.0182 (7)	0.0021 (5)	0.0008 (6)	0.0042 (6)	
C1	0.0201(7)	0.0136(7)	0.0187(7)	0.0022 (6)	0.0031 (6)	0.0053 (6)	

Geometric parameters (Å, °)

01—N1	1.2720 (16)	N5—H5B	0.86
N3—C2	1.3023 (19)	O2—N1	1.2443 (16)
N3—N4	1.3779 (18)	O3—N1	1.2426 (16)
O4—C1	1.2139 (18)	N2—C3	1.3529 (19)
O5—C1	1.3051 (19)	N2—C2	1.3698 (19)
О5—Н5	0.82	N2—H2	0.86
O1W—H2W	0.84 (3)	N4—C3	1.3443 (18)
O1W—H1W	0.86 (2)	N4—H4	0.86
N5—C3	1.3155 (19)	C2—C1	1.495 (2)
N5—H5A	0.86		
C2—N3—N4	103.98 (12)	O3—N1—O2	120.44 (13)
C1—O5—H5	109.5	O3—N1—O1	119.79 (12)
H2W—O1W—H1W	107 (2)	O2—N1—O1	119.77 (12)
C3—N5—H5A	120	N5—C3—N4	126.95 (13)
C3—N5—H5B	120	N5—C3—N2	127.13 (13)
H5A—N5—H5B	120	N4—C3—N2	105.91 (12)
C3—N2—C2	106.57 (12)	N3—C2—N2	112.16 (13)
C3—N2—H2	126.7	N3—C2—C1	124.96 (14)
C2—N2—H2	126.7	N2—C2—C1	122.89 (13)
C3—N4—N3	111.38 (12)	O4—C1—O5	128.33 (15)
C3—N4—H4	124.3	O4—C1—C2	120.16 (14)
N3—N4—H4	124.3	O5—C1—C2	111.50 (13)
C2 N3 N4 C3	-0.23(16)	C2 N2 C2 N2	0.52 (17)
$C_2 = N_3 = N_4 = C_3$	-179 19 (15)	$C_3 = N_2 = C_2 = N_3$	$-170 \ 10 \ (12)$
$N_3 = N_4 = C_3 = N_3$	-1/8.18(13)	$C_3 = N_2 = C_2 = C_1$	-179.10(13) -170.23(15)
$\frac{1}{10} - \frac{1}{10} + \frac{1}{10} - \frac{1}{10} $	0.33(10)	$N_{3} = C_{2} = C_{1} = O_{4}$	-1/9.25(13)
C_2 N2 C_2 N4	1/0.10(15)	$N_2 = C_2 = C_1 = O_4$	0.5(2)
U_2 — N_2 — U_3 — N_4	-0.02(15)	$N_{3} = C_{2} = C_{1} = C_{5}$	0.5(2)
N4 - N3 - C2 - N2	-0.18(16)	N2	-1/9.93 (13)
N4—N3—C2—C1	179.43 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
O5—H5…O1W	0.82	1.72	2.5210 (17)	166
$O1W$ — $H2W$ ··· $O4^{i}$	0.84 (3)	1.97 (3)	2.7985 (18)	166 (2)
O1 <i>W</i> —H1 <i>W</i> ···N3 ⁱⁱ	0.86 (2)	2.05 (3)	2.9011 (19)	172 (2)
N5—H5A···O3	0.86	2.1	2.8672 (18)	148
N5—H5A···O3 ⁱⁱⁱ	0.86	2.44	3.0498 (19)	129
N5—H5 <i>B</i> ····O2 ^{iv}	0.86	2.04	2.8352 (18)	154

supplementary materials

N5 H5 P02iii	0.86	2.41	2 0060 (18)	127	
N3—H3 <i>B</i> ····O2	0.80	2.41	5.0000 (18)	127	
$N2-H2\cdotsO1^{W}$	0.86	2.02	2.8790 (17)	178	
N4—H4…O1	0.86	2.06	2.9112 (18)	171	
N4—H4…O3	0.86	2.42	3.0590 (18)	132	
N4—H4…N1	0.86	2.59	3.4099 (19)	160	

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) -*x*-1, -*y*+1, -*z*; (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*+1, *y*+1, *z*.